

B.K. BIRLA CENTRE FOR EDUCATION

SARALA BIRLA GROUP OF SCHOOLS A CBSE DAY-CUM-BOYS' RESIDENTIAL SCHOOL

TERM-1 EXAMINATION, 2025-26 APPLIED MATHEMATICS (241) (QP)

Class: XII	Time: 3 hrs
Date: 05/09/25	Max Marks: 80
Adm No:	Roll.No.

General Instructions:

- 1. This Question Paper has 5 Sections A, B, C, D and E.
- 2. Section A has 20 MCQs carrying 1 mark each
- 3. Section B has 5 questions carrying 02 marks each.
- 4. Section C has 6 questions carrying 03 marks each.
- 5. Section D has 4 questions carrying 05 marks each.
- 6. Section E has 3 case-based integrated units of assessment (04 marks each) with sub-parts.
- 7. All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2 Qs of 3 marks and 2 Questions of 2 marks have been provided. An internal choice has been provided in the 2marks questions of Section E
- 8. Draw neat figures wherever required. Take $\pi = 22/7$ wherever required if not stated.

SECTION A

1.	If $x \equiv 4 \mod (7)$, then positive values of x are				
	(a) $\{4,11,18,\ldots\}$	(b) { 11,18,25}	(c) $\{4,8,12,\ldots\}$	(d) none of these	
2.				s.B's time over the race	1m
	course is				
	(a) 80 sec	(b) 82 sec	(c) 76 sec	(d) none of these	
3.	If $ x-2 \ge 7$, $x \in$	R, the n			1m
	(a)x ∈ $[-5,9]$	(b) $x \in (-5,9]$	(c) $x \in (-\infty, -5]$ $\cup [9, \infty)$	(d) none of these	
4.	If $x \in R$, $ x \le 9$, t he n	2 ,		1m
	(a) $-9 \le x \le 9$	(b) $x \ge 9$	(c) $x \le -9$	(d) none of these	
5.	The probability of	of guessing at least 8	correct answers out of	of 10 true-false questions	1m
	is				
	(a) 7/64	(b) 7/128	(c) 7/256	(d) no solutions	
6.	For a binomial variate X, if $n = 4$ and $P(X = 0) = 16/81$, then $P(X = 4)$ is				
	(a) 1/3	(b) 1/27	(c) 1/81	(d) none of these	
7. The number of all possible matrices of order 3×3 with entry 0 or 1 is					1m
	(a) 18	(b) 27	(c) 81	(d) 512	
8.	. If A and B are symmetric matrices of same order, then AB – BA is a				
	(a) Symmetric	(b) Skew	(c) Zero matrix	(d) none of these	
	matrix	symmetric			
9.	If A is a square matrix of order 3 and $ A = 2$, then the value of $ -AA' $ is				1m
	(a) 4	(b) 2	(c) -2	(d) none of these	
10.	If A is a square matrix of order 3 X 3 such that $ A = 4$, then $ 3A $ is equal to				1m
	(a) 27	(b) 81	(c) 108	(d) none of these	
11.	If $x = at^2$, $y = 2at$, then y" =			1m

CL_12B_TERM-1_APPLIEDMATH_QP_1/5

	(a) $-1/2at^3$		(c) $1/t^2$	(d) none of these				
12.	Derivative of log x		(-)	(4) 641	1m			
13	(a) $-1/x^3$ If the marginal ray	(b) $-1/x$	(c) -x	(d) none of these $2x + 9x^2$ then the revenue	1m			
13	If the marginal revenue function of a commodity is $MR = 2x - 9x^2$, then the revenue function is							
		(b) $2 - 18x$	(c) $x^2 - 3x^3$	(d) none of these				
14	If the demand function for a commodity is $p = 20 - 2x - x^2$ and the market demand is							
	3 units then consu							
	(a) 27	(b) 38	(c) 42	(d) 47				
15	What is the value of the definite integral							
	$\int_{1}^{2} (x^{2}+1)dx$?							
	(a) 7/3	(b) 10/3	(c) 4	(d) none of these				
16				2x. The supply function	1m			
	is $S=10+x$. What is	s the consumer surpl	lus at the market equ	ilibrium point?				
	(a) 300	(b) 900	(c) 600	(d) none of these				
17	What is the genera	l solution of the diff	Perential equation		1m			
	$\frac{dy}{dx} = \frac{y}{x}$?							
		(b) $y = cx$	(c) y = c + x	(d) none of these				
18	Type II error occur		(c) $y - c + x$	(u) none of these	1m			
10		(b) The null	(c) The null	(d) none of these	1111			
	hypothesis is		hypothesis is					
	false, but we fail		false, and we					
	to reject it.	reject it.	reject it.					
19	Assertion (A):				1m			
1)	* *	oution, the mean and	l variance are equal.		1111			
	Reason (R):	,						
	` '	oution is used to mo	del events that occur	randomly and				
	independently over	r a fixed interval of	time or space					
	(a) Dath Agastian	(A) and Dagger (D)	and the two and Dec	ngan (D) is a sammat				
	explanation of Ass		are the true and Rea	ison (R) is a correct				
		` /	are true but Reason	(R) is not a correct				
	explanation of Ass		are true out recusor	(11) 15 1101 4 0011001				
		s true and Reason (R	(a) is false.					
	` '	s false and Reason (/					
20	Aggartian (A). Tl.	aphytica to the in-	molity 5 = 10 < 0 :- 4	the get of all real records are	1			
20	Assertion (A): The solution to the inequality $5x+10 \le 0$ is the set of all real numbers such that $x \ge -2$.				lm			
	Reason (R): To isolate x, you must subtract 10 from both sides and then divide by 5.							
	(a) Both Assertion (A) and Reason (R) are the true and Reason (R) is a correct							
	explanation of Assertion (A).							
(b) Both Assertion (A) and Reason (R) are true but Reason (R) is not a correct								
	explanation of Assertion (A).							
	(c) Assertion (A) is true and Reason (R) is false.							
	(d) Assertion (A) is false and Reason (R) is true.							

Find y', if $y^{x} + x^{y} + +x^{x} = a^{b}$. 21

2_m

OR

Find y' when $x^y + y^x = \log a$

22 Can you find the values of x and y so that the matrices $\begin{bmatrix} 3x + 7 & 5 \\ y + 1 & 2 - 3x \end{bmatrix}$ and $\begin{bmatrix} 0 & y - 2 \\ 8 & 4 \end{bmatrix}$ may be equal?

2m

Using Cramer's rule, solve the following system of linear equations: 23 (a + b)x - (a - b)y = 4ab $(a-b)x + (a+b)y = 2(a^2 - b^2)$

2m

24 In what ratio must a grocer mix two varieties of pulses costing Rs. 15 per kg and Rs. 20 per kg respectively so as to get a mixture worth Rs 16.50 per kg?

2m

OR

A can run a kilometre in 4 minutes 54 sec. and B in 5 min. How many metres start can A give B in a kim race. So that the race may and in a dead heat?

25 Find the order and degree of the differential equation:

2m

$$\left(rac{d^2y}{dx^2}
ight)^3 + rac{dy}{dx} = \sin x$$

SECTION C

26 Find all pair of consecutive even positive integers, both of which are larger than 5, 3_m such that their sum is less than 23

OR

Solve the following system of linear inequalities: 4x-5 < 11 and $-3x-4 \ge 8$.

If $x = (e^t + e^{-t})/2$ and $y = (e^t - e^{-t})/2$, show $y^2y'' + xy' - y = 0$ 27

3m

3m

OR

Find second order derivative of log(logx).

28 Express the following matrix as the sum of a symmetric matrix and a skew symmetric matrix and verify the result:

The average height of a random sample of 400 people from a city is 1.75 m. It is

$$\begin{bmatrix} 3 & -2 & -4 \\ 3 & -2 & -5 \end{bmatrix}$$

30

29 Find the maximum value of $(\log x)/x$, x > 0.

3_m

known that the population standard deviation is 40

3m

- (a) Determine the 90% confidence interval for the population mean.
- (b) Determine the 95% confidence interval for the population mean.

A sample of 100 Maruti authorised service centres showed 13 are in Delhi, 18 in Mumbai, 17 in Chennai and 15 in Kolkata.

- (i) Develop an estimate of the proportion of Maruti Service centres in Delhi.
- (ii) Develop an estimate of the proportion of Maruti Service centres in Chennai.
- (iii) Develop an estimate of the proportion of Maruti Service centres that are not in these four cities.
- 31 A river near a small-town floods and overflows twice in every 10 years on an 3m average. Assuming that the Poisson distribution is appropriate, what is the mean expectation? Also, calculate the probability of 3 or less overflows and floods in a 10-year interval. [Given $e^{-2} = 0.13534$]

SECTION D

32

Evaluate the following
(i)
$$\int \frac{dx}{2x^2+4x-3}$$
(ii) $\int \frac{dx}{\sqrt{3x^2+2x-1}}$

(ii)
$$\int \frac{dx}{\sqrt{3x^2 + 2x - 1}}$$

OR

Evaluate the following

$$\text{(i)}\int\frac{2x+3}{x^2+3x+2}\,dx$$

(ii)
$$\int \frac{4x^2 + 7x + 5}{x(x+1)^2} \, dx$$

2x + y + 3z = 8-2v + z = 7.

33 Using matrix method, solve the following system of equations: x - 2y = 10

Using Cramer's Rule, solve the following system of equations:

$$2x - y + 3z = 9$$

$$x + 2y - z = 8$$

$$3x - y + 2z = 10$$

34 Find the particular solution of the differential equation $x(1+y^2) dx - y(1+x^2) dy = 0$ given that y = 1 when x = 0.

5_m

5m

5m

5m

35 The probability of a shooter hitting a target is 3/4. How many minimum number of times must he fire so that the probability of hitting the target at least once is more than 0.99?

SECTION E

Susy is rowing a boat. She takes 6 hours to row 48 km upstream whereas she takes 4m 3 hours to go the same distance downstream.

Based on the above situation, answer the following questions:

- (a) What is her speed of rowing in still water?
- (b) What is the speed of the stream?
- (c) What is her average speed?

Or

The stream is flowing at the speed of 4km/h. If Susy rows a certain distance upstream in 3.5 hours and returns to the same place in 1.5 hours, then find the speed of boat?

- Three students Ram, Mohan and Ankit go to a shop to buy stationary. Ram purchases 2 dozen notebooks, 1 dozen pens and 4 pencils, Mohan purchases 1 dozen notebook, 6 pens and 8 pencils and Ankit purchases 6 notebooks, 4 pens and 6 pencils. A notebook costs ₹15, a pen costs ₹4.50 and a pencil costs ₹1.50. Let A and B be the matrices representing the number of items purchased by the three students and the prices of the items respectively. Based on the above information, answer the following questions:
 - (a) Find the order of matrix B representing the price of three items
 - (b) Find the order of matrix A representing items purchased by three students (c) Find the bill amount of Ram

Or

Find the total bill amount of all three students.

A cable network provider in a small town has 500 used to collect ₹ 300 per month from each subscriber. He proposes to increase the monthly charges and it is believed from past experienced that for every increase of ₹1, one subscriber will discontinue the service.

Based on the above information, answer the following questions:

- (a) If $\exists x$ is the monthly increase in subscription amount, then find the number subscribers left.
- (b) Find the total revenue 'R' (in ₹).
- (c) Find the number of subscribers which gives the maximum revenue.

Or

Find the maximum revenue generated.

ALL THE BEST

CL_12B_TERM-1_APPLIEDMATH_QP_5/5

4m